ROSTA OSCLLATING MOUNTINES

Elastic Suspension for Screens and Shaker Conveyors

Selection Table for ROSTA Oscillating Mountings

(Technical recommendation is blue marked)

Guided Shaker Systems (Crank Driven)							
Principle	One-mass shaker	One-mass shaker with spring accumulators	Two-mass shaker with direct compensation of reaction forces				

Selection Table for ROSTA Oscillating Mountings

(Technical recommendation is blue marked)

| Free Oscillating Systems (Unbalanced Excitation) | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| One-mass
 free oscillating screen | Two-mass
 free oscillating screen | Two-mass
 free oscillating feeder
 with frame excitation |

Technology

1. Oscillating Conveyor Technology in General

Technical development has led to a growing demand for the efficient yet gentle conveying of goods. One of the most economical answers to this need is the oscillating conveyor, which has major advantages over alternative systems:

- simple design without parts requiring a lot of maintenance
- extremely low wear in operation
- screening and separating operations may be performed at the same time.
Oscillating conveyors consist of trough-, box- or tubeshaped conveying units, the oscillation rockers and the oscillating exciter. While oscillating mass forces are set up
which lead to two fundamental conveying modes. If the material "slides" forward, we speak of a chute conveyor, but if it is advanced in "short jumps" (microthrows) a shaker conveyor is involved.
Chute conveyors have low frequencies ($1-2 \mathrm{~Hz}$) and large amplitudes (up to about 12 in), and are specially suited for moving material in coarse lumps, as in mining.
Shaker conveyors have high frequencies (up to 10 Hz) and smaller amplitudes (up to about 0.8 in). They are suitable for moving almost all products, provided these do not cake or stick together, over short to medium distances, particularly hot and severe wearing materials.

2. Crank Shaft Driven Shaker Conveyor Systems

2.1. One-mass Oscillation System with Positive Slider Crank Drive

This simplest oscillating conveyor design (fig. 1) is the most economical and consists of the oscillating trough (I), the rocker suspension (B), the drive (CD) and base frame (III). Because there is no mass compensation here, it is employed primarily where dynamic forces exerted to the foundation are small, i.e. where the trough acceleration does not exceed 1.6 g . In any case the conveyor must be installed on a solid substructure (in a basement, on a heavy base frame or solid floor).
The direction of conveying is geared by the rocker suspension (B), so that we speak of unidirectional conveyors. As rocker suspension we recommend our types AU, AR, AS-P or AS-C (see pages 54-59).
The system is advantageously driven by a crank mechanism, in which our oscillating drive head (C) is used as a positive, elastic torsion bearing.

With this crank drive, low frequencies with long throws are achieved in simple fashion, as are essential for the design of long shakers.
The amplitude corresponds to the crank radius R, while the throw is $2 R$. The frequencies of such slider crank oscillating troughs lies between 5 and 10 Hz , with throws between 0.4 and 1.6 in . The movement of material can be controlled during operation by variable-speed motors or drives. In onemass oscillation systems the force introduction i.e. the main direction of oscillation X must be directed ahead of the centre of gravity S (fig. 1).
The crank shaft has to be driven by belts, in order to compensate the shocks at stroke ends!

B ROSTA oscillating mountings type AU, AS or AR
C ROSTA oscillating drive head type ST
D Connecting rod
L Sliding crank lenght
R Sliding crank radius (amplitude)
S Center of gravity of trough (mass)
X Main oscillating direction
α Oscillating angle max. $10^{\circ}\left(\pm 5^{\circ}\right)$
β Rocker angle approx. 20° to 30°
I Trough (mass)
III Frame
Fig. 1

Technology

2.2. Two-mass Oscillation System with Positive Slider Crank Drive (Direct Compensation of Reaction Forces)

Higher conveying performance calls for higher frequencies and amplitudes, which inevitably cause stronger dynamic forces to be exerted on the foundation. In the two-mass oscillation system these forces are minimized due to the direct mass compensation, allowing even long and heavy conveyors to be mounted on relatively light plafform structures or on upper floors.
Fig. 2 shows a shaker conveyor of this kind schematically. With trough I and the countermass (or trough) II having the same mass, the latter performing a compensatory oscillating movement in the opposite sense, the oscillation neutral point O lies in the middle of the double suspension B. If the stationary support III holds the suspension at point O , it
sustains only static forces, so that the machine frame III is virtually no longer subject to dynamic loading. In this case we speak of direct mass compensation. If the counter-mass is used as feeding trough, please note that transport direction is identic with trough I.)
Our elements type AD-P, AD-C and AR are fitted as doublesuspension to support the two troughs on the machine frame (see pages $56 / 57$ and $60 / 61$). The system is driven by eccentric crank with the ROSTA drive head ST.
In contrast to the one-mass system, in the two-mass shaker systems the force introduction may be adapted wheresoever to the trough (mass I) or to the counter weight (mass II).

Fig. 2

2.3. Resonance Oscillating Conveyor with Positive Slider Crank Drive

To reduce the driving forces necessary, the shaker conveyors as presented in 2.1 and 2.2 are operated also as a resonance system. Here the suspensions B (figs. 1 and 2) are key components. Also the spring accumulators, consisting of two elements type DO-A, are supporting the dynamic stiffnes of the trough and are offering a harmonic oscillation of the system, close by the resonance (see pages $62 / 63$). Unlike conventional designs, our suspensions embodying ROSTA rubber suspension units are able to perform four important functions simultaneously:

- supporting the static load
- forming an oscillating system in which the dynamic spring stiffness is determining the resonance drivecapacity
- dictating the direction of oscillation
- insulating vibration and structure-borne noise

B ROSTA double suspensions type AD or AR
C ROSTA oscillating drive head type ST
α Oscillation angle $\max .10^{\circ}\left(\pm 5^{\circ}\right)$
β Rocker angle approx. 20° to 30°
I Trough (mass)
II Countermass
III Frame

To obtain a system as close to resonance as possible, based on the dynamic spring value of the ROSTA elements, various data of the projected shaker conveyor trough are needed. The number and size of the suspensions depend on the weight of the oscillating mass, on the conveying capacity desired, on the stroke and drive frequency. This drive frequency must as a rule be 10% lower than the natural frequency of the installation. Typical calculations of this may be found on pages 55-65.

Technology

3. Terminology and Calculation (Crank Shaft Driven Systems)

3.1. Terminology

Symbol	Unit	Term
a	${\mathrm{ft} / \mathrm{sec}^{2}}$	Acceleration
A	inch	Center distance rockers
c_{d}	$\mathrm{lb} / \mathrm{in}$	Dynamic spring value (rocker)
c_{t}	$\mathrm{lb} / \mathrm{in}$	Total spring value (system)
f_{e}	Hz	Natural frequency (elements)
$\mathrm{f}_{\text {err }}$	Hz	Excitation frequency
F	lb	Force
g	$32.16 \mathrm{ft} / \mathrm{sec}^{2}$	Gravitational acceleration
K	$\frac{\text { machine acc. }}{\text { grov. acc. }}$	Oscillating machine factor

Symbol	Unit	Term
m	lb	Mass
$\mathrm{n}_{\text {err }}$	rpm	Revolutions per minute
R	inch	Crank radius
S	-	Center of gravity
sw	inch	Throw (peak to peak)
$\mathrm{v}_{\text {th }}$	$\mathrm{ft} / \mathrm{sec}$	Theoretical velocity (material)
z	-	Quantity (number)
W	$\%$	Degree of isolation
α	\circ	Oscillation angle
β	\circ	Rocker angle (inclination)

3.2. Calculation

Formulas for calculating oscillating machines based on the fundamental knowledges about oscillation theories.

Total spring value (system)	$c_{\mathrm{t}}=\frac{\left(\frac{2 \pi}{60} \cdot \mathrm{n}_{\mathrm{err}}\right)^{2} \cdot \mathrm{~m}}{\mathrm{~g} \cdot 12}$	[lb/in]
Excitation frequency	$f_{\text {err }}=\frac{1}{2 \pi} \cdot \sqrt{\frac{9 \cdot 12 \cdot c_{f}}{m}}$	[Hz]
Number of rockers for resonance operation	$z=\frac{c_{t}}{0.9 \cdot c_{d}}$	[piece]
Oscillating machine factor (g-factor of acceleration)	$K=\frac{\left(\frac{2 \pi}{60} \cdot n_{\text {err }}\right)^{2} \cdot R}{g \cdot 12}$	[-]
Amplitude (peak to peak)	$s w=2 \cdot R$	[in]
Acceleration force	$F=K \cdot m$	[lb]
Required driving power (approximation)	$P \approx \frac{R \cdot K \cdot m \cdot n_{\text {err }}}{\frac{60}{2 \pi} \cdot 12 \cdot 550 \cdot \sqrt{2}}$	[hp]

The theoretical material speed of a horizontally positioned shaker conveyor with rocker arms installed under an inclination angle of 30° can be determined out of the left graph. Example: eccentric radius $R=0.98$ in and $n_{\text {err }}=420 \mathrm{rpm}$ is giving an acceleration of $\sim 5 \mathrm{~g}$ and offering a theoretical material speed of $\sim 2.90 \mathrm{ft} / \mathrm{sec}$.

It requires two-mass systems with direct mass compensation by accelerations $>1.7 \mathrm{~g}$ (one-mass resonance systems with spring accumulators $=$ up to 2.2 g possible).

ROSTA

Applications

Double rockers on tabacco shaker

Support of heavy gyratory sifter with AK

Elastic drive head on tabacco shaker

Drive head fixation on chip feeder

Single rocker on chip feeder

Rocker fixation on feeder frame

Oscillating Mounting

UPC \#	Type	G	$\mathrm{n}_{\text {err }}$	Mdd	Dimensions in inches												Weight in lbs.
					A	B	C	D	E	H	J	K	L	M	N	\bigcirc	
25158	AU15	22.48	1200	0.32	1.97	0.16	1.14	0.79	1.10	1.97	2.76	0.98	1.57	M10	0.28	1.30	0.42
25187	AU15L	22.48	1200	0.32	1.97	0.16	1.14	0.79	1.10	1.97	2.76	0.98	1.57	M10L	0.28	1.30	0.42
24854	AU18	44.96	1200	0.97	2.44	0.20	1.24	0.87	1.34	2.36	3.35	1.38	1.77	M12	0.37	1.54	0.75
25188	AU18L	44.96	1200	0.97	2.44	0.20	1.24	0.87	1.34	2.36	3.35	1.38	1.77	M12L	0.37	1.54	0.75
25160	AU 27	89.92	800	1.92	2.87	0.20	1.59	1.10	1.57	3.15	4.33	1.77	2.36	M16	0.45	2.13	1.43
25189	AU271	89.92	800	1.92	2.87	0.20	1.59	1.10	1.57	3.15	4.33	1.77	2.36	M16L	0.45	2.13	1.43
25161	AU38	179.85	800	4.94	3.74	0.24	2.09	1.65	2.05	3.94	5.51	2.36	3.15	M20	0.55	2.91	3.42
25190	AU38L	179.85	800	4.94	3.74	0.24	2.09	1.65	2.05	3.94	5.51	2.36	3.15	M20L	0.55	2.91	3.42
24162	AU45	359.70	800	8.56	4.72	0.31	2.64	1.89	2.60	5.12	7.09	2.76	3.94	M24	0.71	3.50	5.62
25191	AU 45 L	359.70	800	8.56	4.72	0.31	2.64	1.89	2.60	5.12	7.09	2.76	3.94	M24L	0.71	3.50	5.62
24163	AU 50	562.03	600	15.05	5.71	0.39	2.76	2.36	3.15	5.51	7.48	3.15	4.13	M36	0.71	3.62	14.77
25192	AU50 L	562.03	600	15.05	5.71	0.39	2.76	2.36	3.15	5.51	7.48	3.15	4.13	M36L	0.71	3.62	14.77
25164	AU60	1124.05	400	34.39	9.17	0.59	3.35	3.15	5.04	7.09	9.06	4.72	5.12	M42	0.71	4.57	34.61
25193	AU60	1124.05	400	34.39	9.17	0.59	3.35	3.15	5.04	7.09	9.06	4.72	5.12	M42L	0.71	4.57	34.61

$\mathrm{G}=$ max. loading in lb per unit or rocker suspension
$n_{\text {err }}=$ max. frequency in rpm at $\Varangle 10^{\circ}$, from zero $\Varangle \pm 5^{\circ}$
$\mathrm{Md}_{\mathrm{d}}=$ dynamic torque in ft . $\mathrm{lbs} . /$ deg. at $\Varangle \pm 5^{\circ}$, in frequency range 300-600 rpm
Mountings for higher loads available on request.

Material Structure

The housings up to type AU 45 are made out of light metal die cast, from type AU 50 in nodular cast; inner square and fixation flange in steel.

Guidelines for Fitting

The rocker angle β of the oscillating mounting is 10° to 30° according to experience, depending largely on the conveying performance and the material to be moved. To secure optimal performance the troughs, screens etc. must be designed stiff and rigid. If the available space does not allow the mountings to be fitted from the side, they may also be placed between the trough and the base frame. Here the threaded connecting rod allows optimal levelling in all cases.

Oscillating Mounting

To calculate the dynamic spring value of an oscillating mounting, for example 2 AU 27 , operating close to resonance.

Given:

Dynamic torque Md_{d}
Mounting with distance A between centres
$=1.92 \mathrm{ft} . \mathrm{lbs} . / \mathrm{deg}$.
$=7.85$ in

Wanted:

Dynamic spring value c_{d}
$c_{d}=\frac{M d_{d} \cdot 360 \cdot 12}{A^{2} \cdot \pi}=\frac{1.92 \cdot 360 \cdot 12}{7.85^{2} \cdot \pi} \quad=42.8 \mathrm{lb} / \mathrm{in}$

Typical Calculation

Given:

Weight of trough

$$
=440 \mathrm{lbs} .
$$

Material on trough
$=110 \mathrm{lbs}$.
of this 20% coupling effect
Total weight of oscillating mass m
(trough and coupling effect)
$=22 \mathrm{lbs}$.

Eccentric radius R
$=462 \mathrm{lbs}$.
$=0.55$ in

Speed $n_{\text {err }}$
$=320 \mathrm{rpm}$
Oscillating machine factor $\mathrm{K}=\frac{\left(\frac{2 \pi}{60} \cdot \mathrm{n}_{\text {err }}\right)^{2} \cdot \mathrm{R}}{\mathrm{g} \cdot 12}=1.6$
Total spring value $\mathrm{c}_{\mathrm{t}}=\frac{\left(\frac{2 \pi}{60} \cdot \mathrm{n}_{\text {err }}\right)^{2} \cdot \mathrm{~m}}{\mathrm{~g} \cdot 12} \quad=1344.3 \mathrm{lb} / \mathrm{in}$

Connecting Rod

The connecting rod is provided by the customer, preferably with left-/ right-hand thread. Together with the associated oscillating mountings AU the distance between elements A can then be levelled steplessly. Lower costs may be attained, though at the price of rougher levelling, by using commercial rods with right-head thread only. In any case the appropriate screwed-in length must be observed.

Wanted:

Number of oscillating mountings each comprising 2 elements type AU 27 a) in resonance operation

Here the total spring value of the mountings must be about 10% above the total spring value c_{t} of the installation. From this follows:
Spring value c_{d} of an oscillating mounting consisting of two AU 27
spaced at $7.87 \mathrm{in}=42.8 \mathrm{lb} / \mathrm{in}$.
Number of mountings $=\frac{c_{\uparrow}}{0.9 \cdot c_{d}}=\frac{1344.3}{0.9 \cdot 42.8}=34.9$ pieces
Selected: 36 mountings each comprising two $A U 27=72 \times$ AU 27
b) without resonance operation

Here the total weight G must be taken up by the total number of oscillating mountings. The admissible loading of one mounting comprising two AU 27 is 89.92 lbs .

Number of mountings $=\frac{\mathrm{m}}{89.92}=\frac{462}{89.92}=5.14$ pieces
Selected: 6 oscillating mountings each comprising two $\mathrm{AU} 27=12 \times \mathrm{AU} 27$

Oscillating Mounting

$\mathrm{K}=$ oscillating machine factor
$\mathrm{n}_{\text {err }}=$ max. frequency in rpm with $\Varangle \pm 5^{\circ}$
$\mathrm{Md}_{\mathrm{d}}=$ dynamic spring value in ft.-lbs./deg. at $\Varangle \pm 5^{\circ}$, in frequency range 300-600 rpm

Material Structure

Housings in light metal die cast, inner square in light alloy profile.

Single Rocker Arm

ROSTA oscillating mountings type AR in single rocker configuration: mounted on a round tube. It is best to adjust the desired center-distance between the axes on a surface plate and to subsequently tighten the clamp in order to frictionally connect the circular tube. The unit is fixed to the trough and the machine frame by means of frictional connection to the inner square section of the element by means of a bolt.

Dynamic Spring Value

The dynamic spring value c_{d} of an oscillation unit consisting of 2 elements, type AR, is calculated as following:
$\mathrm{c}_{\mathrm{d}}=\frac{\mathrm{Md}_{\mathrm{d}} \cdot 360 \cdot 12}{\mathrm{~A}^{2} \cdot \pi}=[\mathrm{lb} / \mathrm{in}]$

Double Rocker Arm

ROSTA oscillating mountings type AR in double rocker configuration: These elements are mounted in the same way as the single rocker arms. However, the material thickness of the round connection tube must be adapted according to the final center distances (see table on bottom left of this page). The double rocker arm allows easy installation in high-speed two-mass shaker conveyors with direct balancing. The counterweight can be used as additional conveyor trough. The material flows in the same direction, both on the trough and the counterweight.

Bidirectional Rocker Arm

ROSTA oscillating mountings type AR in boomerang configuration for bidirectional conveying. The double rocker is mounted vertically, the middle element is rotated by 180°. The angles of the double rocker go in opposite direction, causing the material on the counterweight to move in opposite direction, too. The bidirectional conveying allows an easier processing of the bulk material, but still guarantees a perfect balancing of masses for high-speed oscillating conveyors.

Dynamic Spring Value

The dynamic spring value c_{d} of an oscillation unit consisting of 3 elements, type AR, is calculated as following:
$\mathrm{c}_{\mathrm{d}}=\frac{3 \cdot 360 \cdot \mathrm{Md}_{\mathrm{d}} \cdot 12}{4 \cdot \pi} \cdot\left(\frac{1}{\mathrm{Al}^{2}}+\frac{1}{\mathrm{AR}^{2}}\right)=[\mathrm{lb} / \mathrm{in}]$
$\mathrm{c}_{\mathrm{d}}=$ dynamic spring value in $\mathrm{lb} /$ in with torsion $\pm 5^{\circ}$,
frequency range $300-600 \mathrm{rpm}$.

Dimensions of the Connecting Tubes
(to be provided by the customer)

Type	Dimensions in inches		
	Tube diameter	min. thickness of tube	$\begin{aligned} & \text { max. } \\ & \text { A1 or A2 } \end{aligned}$
AR 27	1-1/4	0.125*	7.0
	$1-1 / 4$	0.125	9.0
	$1-1 / 4$	0.250	12.0
AR 38	1-1/2	0.125*	8.0
	1-1/2	0.125	10.0
	1-1/2	0.250	12.0

[^0]
Rocker Suspension

UPC \#	Type	G	$\mathrm{n}_{\text {err }}$	sw	$\mathrm{cd}^{\text {d }}$	Dimensions in inches								Weight in lbs.
37587	\triangle AS-P 15	22.48	1200	0.67	29	3.94	1.97	0.16	1.97	2.76	0.28	0.98	0.71	1.19
37588	AS-P 18	44.96	1200	0.83	57	4.72	2.44	0.20	2.36	3.35	0.37	1.38	0.94	1.79
37589	AS-P 27	89.92	800	1.10	69	6.30	2.87	0.20	3.15	4.33	0.45	1.77	1.34	3.95
37590	AS-P 38	179.85	800	1.38	109	7.87	3.74	0.24	3.94	5.51	0.55	2.36	1.57	7.87
57657	\triangle AS-P 45	359.70	800	1.38	189	7.87	4.72	0.31	5.12	7.09	0.71	2.76	1.77	12.17
57658	\triangle AS-P 50	562.03	600	1.73	217	9.84	5.71	0.39	5.51	7.48	0.71	3.15	2.36	18.23

UPC \#	Type	G	$\mathrm{n}_{\text {err }}$	sw	Cd	Dimensions in inches								Weight in lbs.
57659	\triangle AS-PV 15	22.48	1200	0.67	29	3.94	2.20	0.16	1.97	2.76	0.28	0.98	0.71	1.19
57660	AS-PV 18	44.96	1200	0.83	57	4.72	2.68	0.20	2.36	3.35	0.37	1.38	0.94	1.79
57661	AS-PV 27	89.92	800	1.10	69	6.30	3.15	0.20	3.15	4.33	0.45	1.77	1.34	3.95
57662	AS-PV 38	179.85	800	1.38	109	7.87	4.09	0.24	3.94	5.51	0.55	2.36	1.57	7.87
57663	\triangle AS-PV 45	359.70	800	1.38	189	7.87	5.20	0.31	5.12	7.09	0.71	2.76	1.77	12.17
57664	$\triangle \mathrm{AS}-\mathrm{PV} 50$	562.03	600	1.73	217	9.84	6.30	0.39	5.51	7.48	0.71	3.15	2.36	18.23

$G=$ max. loading in lbs. per suspension
$n_{\text {err }}=$ max. frequency in rpm at $\Varangle 10^{\circ}$, from zero $\Varangle \pm 5^{\circ}$
sw = max. amplitude in in
$\mathrm{c}_{\mathrm{d}}=$ dynamic spring value in $\mathrm{lb} /$ in at $\Varangle \pm 5^{\circ}$, in frequency range $300-600 \mathrm{rpm}$
Suspensions for higher loads available on request.
\triangle available on request

Material Structure

Rocker arm made out of welded steel structure; inner square and fixation flange in steel.

Guidelines for Fitting

The rocker angle β of the rocker suspensions is 10° to 30° according the experience, depending largely on the conveying performance and the material to be moved. To secure optimal performance the troughs, screens etc. must be designed stiff and rigid. If the available space does not allow the suspensions to be fitted from the side, they may also be placed between the trough and the base frame using fitting parts to be produced by the customer.

Rocker Suspension

UPC \#		Type	G	$\mathrm{n}_{\text {err }}$	sw	c_{d}	Dimensions in inches						Weight in lbs.
37591	\triangle	AS-C 15	22.48	1200	0.67	29	3.94	1.57	0.10	1.77	0.39	0.71	0.84
37592		AS-C 18	44.96	1200	0.83	57	4.72	1.97	0.10	2.17	0.51	0.94	1.23
37593		AS-C 27	89.92	800	1.10	69	6.30	2.36	0.10	2.56	0.63	1.34	2.89
37594		AS-C 38	179.85	800	1.38	109	7.87	3.15	0.20	3.54	0.79	1.57	5.73
63659		AS-C 45	359.70	800	1.38	189	7.87	3.94	0.20	4.33	0.94	1.77	8.69
63660		AS-C 50	562.03	600	1.73	217	9.84	4.72	0.20	5.12	1.18	2.36	13.34

$G=$ max. loading in lbs. per suspension
$\mathrm{n}_{\text {err }}=$ max. frequency in rpm at $\Varangle 10^{\circ}$, from zero $\Varangle \pm 5^{\circ}$
sw = max. amplitude in in
$c_{d}=$ dynamic spring value in $\mathrm{lb} /$ in at $\Varangle \pm 5^{\circ}$, in frequency range $300-600 \mathrm{rpm}$
Suspensions for higher loads available on request.
\triangle available on request

Material Structure

Rocker arm made out of welded steel structure; inner square in light alloy profile.

Typical Calculation

Given:

Weight of trough Material on trough of this 20% coupling effect Total weight of oscillating mass (trough and coupling effect) $=110 \mathrm{lbs}$. $=22 \mathrm{lbs}$. Eccentric radius R	$=462 \mathrm{lbs}$.
Speed $\quad \mathrm{n}_{\text {err }}$	$=0.55 \mathrm{in}$
Oscillating machine factor $\mathrm{K}=\frac{\left(\frac{2 \pi}{60} \cdot \mathrm{n}_{\text {err }}\right)^{2} \cdot \mathrm{R}}{\mathrm{g} \cdot 12}$	$=1.6$
Total spring value $\mathrm{c}_{\mathrm{t}}=\frac{\left(\frac{2 \pi}{60} \cdot \mathrm{n}_{\text {err }}\right)^{2} \cdot \mathrm{~m}}{\mathrm{~g} \cdot 12}$	$=1344 \mathrm{lb} / \mathrm{in}$

Wanted:

Number of double rocker suspensions of size 27 for example
a) in resonance operation

Here the total spring value of the suspensions must be about 10% above the total spring value c_{t} of the installation. From this follows: Spring value c_{d} of the rocker suspension AS $27=69 \mathrm{lb} /$ in

Number of suspensions $=\frac{c_{t}}{0.9 \cdot c_{d}}=\frac{1344}{0.9 \cdot 69}=21.6$ pieces
Selected: 22 of AS-P 27 or AS-C 27
b) without resonance operation

Here the total weight G must be taken up by the total number of rocker suspensions. The admissible loading of one AS 27 suspension is 89.92 lbs .

Number of suspensions $=\frac{m}{89.92}=\frac{462}{89.92}=5.14$ pieces
Selected: 6 of AS-P 27 or

Double Suspension

Type AD-P

Type AD-PV with offset flanges

UPC \#	Type	G			$\mathrm{n}_{\text {err }}$	sw	c_{d}	Dimensions in inches							Weight in lbs.
		$\mathrm{K}=2$	$K=3$	$K=4$				A	B	C	D	E	F	H	
37579	AD-P 18	33.72	26.98	22.48	640	0.67	126	3.94	2.44	0.20	2.36	3.35	0.37	1.38	2.67
37580	AD-P 27	67.44	53.95	44.96	590	0.83	183	4.72	2.87	0.20	3.15	4.33	0.45	1.77	5.62
37581	AD-P 38	134.89	112.41	89.92	510	1.10	257	6.30	3.74	0.24	3.94	5.51	0.55	2.36	12.21
37542	\triangle AD-P 45	269.77	224.81	179.85	450	1.38	286	7.87	4.72	0.31	5.12	7.09	0.71	2.76	18.76
57665	\triangle AD-P 50	404.66	337.22	269.77	420	1.73	314	9.84	5.71	0.39	5.51	7.48	0.71	3.15	28.44

UPC \#	Type				$\mathrm{n}_{\text {err }}$	sw	c_{d}	Dimensions in inches							Weight in lbs.
		$K=2$	$\mathrm{K}=3$	$\mathrm{K}=4$				A	B_{1}	C	D	E	F	H	
57666	AD-PV 18	33.72	26.98	22.48	640	0.67	126	3.94	2.68	0.20	2.36	3.35	0.37	1.38	2.67
57667	AD-PV 27	67.44	53.95	44.96	590	0.83	183	4.72	3.15	0.20	3.15	4.33	0.45	1.77	5.62
57668	AD-PV 38	134.89	112.41	89.92	510	1.10	257	6.30	4.09	0.24	3.94	5.51	0.55	2.36	12.21
57669	\triangle AD-PV 45	269.77	224.81	179.85	450	1.38	286	7.87	5.20	0.31	5.12	7.09	0.71	2.76	18.76
57670	\triangle AD-PV 50	404.66	337.22	269.77	420	1.73	314	9.84	6.30	0.39	5.51	7.48	0.71	3.15	28.44

$G=$ max. loading in lbs. per suspension
$\mathrm{K}=$ oscillating machine factor
$n_{\text {err }}=$ max. frequency in rpm at $\Varangle 10^{\circ}$, from zero $\Varangle \pm 5^{\circ}$
sw = max. amplitude in in
$c_{d}=$ dynamic spring value in $\mathrm{lb} /$ in at $\Varangle \pm 5^{\circ}$, in frequency range $300-600 \mathrm{rpm}$
Suspensions for higher loads or asymmetric distances between centres A available on request.
Δ available on request

Material Structure

Rocker arm made out of welded steel structure; inner square and fixation flange in steel.

Guidelines for Fitting

The rocker angle β of the rocker suspensions is 10° to 30° according to experience, depending largely on the conveying performance and the material to be moved. To secure optimal performance the troughs, screens etc. must be designed stiff and rigid. Types AD-P are intended for flange mounting. Types AD-C for central fixing.

UPC \#	Type	G			$\mathrm{n}_{\text {err }}$	sw	$\mathrm{c}_{\text {d }}$	Dimensions in inches					Weight in lbs.
		K=2	$\mathrm{K}=3$	$\mathrm{K}=4$				A	B	C	D	E	
37583	AD-C 18	33.72	26.98	22.48	640	0.67	126	3.94	1.97	0.10	2.17	0.51	1.85
37584	AD-C 27	67.44	53.95	44.96	590	0.83	183	4.72	2.36	0.10	2.56	0.63	4.06
37585	AD-C 38	134.89	112.41	89.92	510	1.10	257	6.30	3.15	0.20	3.54	0.79	3.02
37586	\triangle AD-C 45	269.77	224.81	179.85	450	1.38	286	7.87	3.94	0.20	4.33	0.94	13.40

$G=$ max. loading in lbs. per suspension
$\mathrm{K}=$ oscillating machine factor
$n_{\text {err }}=$ max. frequency in rpm at $\Varangle 10^{\circ}$, from zero $\Varangle \pm 5^{\circ}$
sw = max. amplitude in in
$\mathrm{c}_{\mathrm{d}}=$ dynamic spring value in $\mathrm{lb} /$ in at $\Varangle \pm 5^{\circ}$, in frequency range $300-600 \mathrm{rpm}$
Suspensions for higher loads or asymmetric distances between centres A available on request.
\triangle available on request

Material Structure

Rocker arm made out of welded steel structure; inner square in light alloy profile.

Typical Calculation

Given:

Weight of trough	$=440 \mathrm{lbs}$.
Weight of counter mass	$=440 \mathrm{lbs}$.
Material on trough	$=110 \mathrm{lbs}$.
of this 20\% coupling effect	$=22 \mathrm{lbs}$.
Total weight of oscillating mass m (trough counter mass and coupling effect)	$=902 \mathrm{lbs}$.
Eccentric radius R	$=0.55 \mathrm{in}$
Speed $\mathrm{n}_{\text {err }}$	$=360 \mathrm{rpm}$
Oscillating machine factor $K=\frac{\left(\frac{2 \pi}{60} \cdot n_{\text {err }}\right)^{2} \cdot R}{g \cdot 12}$	$=2.0$
Total spring value $\mathrm{c}_{\mathrm{t}}=\frac{\left(\frac{2 \pi}{60} \cdot \mathrm{n}_{\text {err }}\right)^{2} \cdot \mathrm{~m}}{\mathrm{~g} \cdot 12}$	$=3321.8 \mathrm{lb} / \mathrm{in}$

Wanted:

Number of double rocker suspensions of size 38 for example
a) in resonance operation

Here the total spring value of the suspensions must be about 10% above the total spring value c_{t} of the installation. From this follows: Spring value c_{d} of the rocker suspension AD $38=257 \mathrm{lb} /$ in

Number of suspensions $=\frac{c_{t}}{0.9 \cdot c_{d}}=\frac{3321.8}{0.9 \cdot 257}=14.4$ pieces
Selected: 14 of AD-P 38 or AD-C 38
b) without resonance operation

Here the total weight G must be taken up by the total number of rocker suspensions. The oscillating machine factor $\mathrm{K}=2.0$ must be taken into account, also the admissible loading of one AD 38 under acceleration $2 \mathrm{~g}=134.89 \mathrm{lbs}$.

Number of suspensions $=\frac{\mathrm{m}}{134.89}=\frac{902}{134.89}=6.7$ pieces
Selected: 8 of AD-P 38 or
AD-C 38

ROSTA

Rubber Suspension Unit (as Spring Accumulafor)

UPC \#	Type	$\mathrm{cd}^{\text {d }}$	Dimensions in inches											Weight in lbs.
			L	L1	A	B	D	E	F	G	H	1	S	
25131	DO-A 45×80	1256	3.15	3.54	0.47	1.38	3.35	2.87	5.88	-	-	-	1.77	4.08
25132	DO-A 45×100	1484	3.94	4.33	0.47	1.38	3.35	2.87	5.88	-	-	-	1.77	4.98
57671	DO-A 50×120	2284	4.72	5.12	M12	1.57	3.50	3.07	6.57	1.18	2.36	0.48	1.97	12.13
57672	DO-A 50×200	3426	7.87	8.27	M12	1.57	3.50	3.07	6.57	1.57	2.76	0.48	1.97	18.74

$\mathrm{c}_{\mathrm{d}}=$ dynamic spring value in $\mathrm{lb} /$ in at $\Varangle \pm 5^{\circ}$, in frequency range 300-600 rpm
Elements with higher load capacity are available on request.
*DO-A 45 with convex housing shape.

Material Structure

Housing of size 45 is made out of light alloy profile, housing of size 50 in nodular cast; inner squares in light alloy profile with 4 bores for the fixation of connection brackets shaker: frame.

A spring accumulator consists of two ROSTA rubber suspension units type DO-A and a customer supplied connection link V. The dynamic spring value of this configuration corresponds to only 50% of a single DO-A element, due to the effected double serie-connection, which is reducing the dynamic stiffness to half.

Element Type	c_{d}	perm. osc. angle	R	sw	$\mathrm{n}_{\text {err }}$
$2 \times$ DO-A45 $\times 80$	628	$\pm 5^{\circ}$	0.49	0.98	520
		$\pm 4^{\circ}$	0.39	0.79	780
		$\pm 3^{\circ}$	0.30	0.59	1280
$2 \times$ DO-A45 $\times 100$	742	$\pm 5^{\circ}$	0.49	0.98	480
		$\pm 4^{\circ}$	0.39	0.79	720
		$\pm 3^{\circ}$	0.30	0.59	1200
$2 \times$ DO-A50 $\times 120$	1142	$\pm 5^{\circ}$	0.54	1.07	420
		$\pm 4^{\circ}$	0.43	0.86	600
		$\pm 3^{\circ}$	0.32	0.65	960
$2 \times$ DO-A50 200	1713	$\pm 5^{\circ}$	0.54	1.07	380
		$\pm 4^{\circ}$	0.43	0.86	540
		$\pm 3^{\circ}$	0.32	0.65	860

[^1]
Rubber Suspension Unit

As Spring Accumulator for One-mass Shaker Conveyor Troughs (Compression/Tension Spring Accumulator)

The oscillating conveyor systems are built such that they run very close to the resonance frequency in order to keep the energy consumption down and to improve the fatigue resistance of the structure (trough and frame). The total spring value c_{t} of the trough should be approximately equal to
the stiffness of the oscillating elements. Usually the spring accumulators produce a dynamic rigidity exceeding the one of the rocker arms by far and allowing the oscillating machine to run very close to the resonance frequency in a smooth and harmonic manner.

Typical Calculation

Given:

Oscillating conveyor trough: length: 6.0 m (due to the trough stiffness there are mounted 4 rockers on each side)

Total oscillating mass m	$=826 \mathrm{lbs}$.
Revolutions per minute $\quad \mathrm{n}_{\text {err }}$	
Crank radius R Oscillating machine factor K $=0.24 \mathrm{in}$ Total spring value $\quad c_{\mathrm{t}}=\frac{\left(\frac{2 \pi}{60} \cdot \mathrm{n}_{\text {err }}\right)^{2} \cdot \mathrm{~m}}{\mathrm{~g} \cdot 12}$ $=4966 \mathrm{lb} / \mathrm{in}$	

Wanted:

Number of rocker suspensions for operation close to the resonance frequency

Load per rocker $=\frac{m}{8}=\frac{826}{8}$
$=103.25 \mathrm{lbs}$.
$\longrightarrow 8$ AS-C 38 units are necessary

Spring value $\mathrm{c}_{\mathrm{d}}=8 \cdot 108.5 \mathrm{lb} / \mathrm{in}$	$=868 \mathrm{lb} / \mathrm{in}$
4 rocker suspensions each consisting	
of $2 \mathrm{DO}-\mathrm{A} 50 \times 120$ elements	
with $\mathrm{c}_{\mathrm{d}}=1142 \mathrm{lb} / \mathrm{in}$ each	$=4568 \mathrm{lb} / \mathrm{in}$
$\left.\begin{array}{ll}\text { Total } \mathrm{c}_{\mathrm{d}} \text { of all ROSTA rubber suspension units } & =5436 \mathrm{lb} / \mathrm{in} \\ \begin{array}{ll}\text { Necessary total spring value } \mathrm{c}_{\mathrm{t}} \text { of trough } \\ \text { Reserve value for overload }\end{array} & =4966 \mathrm{lb} / \mathrm{in} \\ & =470 \mathrm{lb} / \mathrm{in}\end{array}=9.4 \%\right)$	

Suspension Units for Two-mass Oscillating Conveyor Trough

The installation of the two-mass oscillation conveyor system (see page 51) must be done according to the figure on the right.
The accumulators are mounted either on trough I and on the machine frame (see blue elements) or on the frame and on counterweight II. When calculating the total spring value c_{t} of the two-mass oscillating machine it is necessary to fully include the counterweight.

Oscillating Drive Head

					Dimensions in inches										Weight in lbs.
UPC \#	Type	F	max.	in rpm	A	B	C	D	E	H	J	K	L	M	
25165	ST 18	89.92	10°	1200	1.97	2.17	1.24	1.77	0.79	0.47	$\varnothing 0.24$	0.87	1.54	M 12	0.42
25194	ST 18L	89.92	10°	1200	1.97	2.17	1.24	1.77	0.79	0.47	$\varnothing 0.24$	0.87	1.54	M 12L	0.42
25166	ST 27	224.81	10°	1200	2.36	2.56	1.59	2.36	1.06	0.79	$\varnothing 0.31$	1.10	2.13	M 16	0.93
25195	ST 27 L	224.81	10°	1200	2.36	2.56	1.59	2.36	1.06	0.79	$\varnothing 0.31$	1.10	2.13	M16L	0.93
25167	ST 38	449.62	10°	800	3.15	3.54	2.09	3.15	1.46	0.98	$\varnothing 0.39$	1.65	2.91	M 20	2.31
25196	ST38L	449.62	10°	800	3.15	3.54	2.09	3.15	1.46	0.98	$\varnothing 0.39$	1.65	2.91	M 20 L	2.31
24851	ST 45	786.84	10°	800	3.94	4.33	2.64	3.94	1.73	1.38	$\varnothing 0.47$	1.89	3.50	M 24	4.03
25197	ST 45L	786.84	10°	800	3.94	4.33	2.64	3.94	1.73	1.38	$\varnothing 0.47$	1.89	3.50	M24L	4.03
24852	ST 50	1348.86	10°	600	4.72	5.12	2.76	4.13	1.89	1.57	M12 $\times 40$	2.36	3.66	M36	12.13
25198	ST50L	1348.86	10°	600	4.72	5.12	2.76	4.13	1.89	1.57	M12 $\times 40$	2.36	3.66	M36L	12.13
25170	ST 60	2697.72	6°	400	7.87	8.27	3.35	5.12	2.36	1.77	M16 $\times 22$	3.15	4.57	M 42	35.94
25199	ST60L	2697.72	6°	400	7.87	8.27	3.35	5.12	2.36	1.77	M16 $\times 22$	3.15	4.57	M 42L	35.94
25171	ST 80	5395.44	6°	400	11.81	12.20	3.94	6.30	3.03	2.36	M 20×28	3.94	5.91	M 52	68.34

$\mathrm{F}=$ max. acceleration force in lb
Mountings for higher loads available on request.

Material Structure

The housings up to size ST 45 are made out of light metal die cast, from type ST 50 in nodular cast; inner square in light alloy profile.

Typical Calculation

Given:

Weight of trough		$=440 \mathrm{lbs}$.
Material on trough		$=110 \mathrm{lbs}$.
of this 20\% coupling effect		$=22 \mathrm{lbs}$.
Total weight of oscillating mass	m	
(trough and coupling effect)		$=462 \mathrm{lbs}$.
Eccentric radius R		0.55 in
Speed $\mathrm{n}_{\text {err }}$		$=320 \mathrm{rpm}$
Connecting rod lenght		$=24$ in
Ratio R:L	= 1:0.023;	± 1.3

Since the ratio $R: L$ is very low (<0.1) it is possible to achieve harmonic excitation.

Guidelines for Fitting

For ideal conditions the force introduction should be applied slightly ahead of the centre of gravity S and 90° to the angle β. The element axis must be 90° to the longitudinal axis of the trough and run centrally to the centre of gravity S . Fixing is done with shaft screws of 8.8 quality (analogous to fixing the universal joint support).

Wanted:

Acceleration force F in lb
$F=\frac{m \cdot R \cdot\left(\frac{2 \pi}{60} \cdot \text { nerr }^{\prime}\right)^{2}}{g \cdot 12}$
$=\frac{462 \cdot 0.55 \cdot\left(\frac{2 \pi}{60} \cdot 320\right)^{2}}{32.16 \cdot 12}=739 \mathrm{lbs}$

Selected: 1 piece of ST 45

UPC \#	Type	Cd	Dimensions in inches								Weight in lbs.
			L	L1	A	B	D	E	F	S	
25126	DO-A 27×60	913	2.36	2.56	0.31	0.79	1.85	1.73	3.58	1.06	1.04
25129	DO-A 38×80	1199	3.15	3.54	0.39	0.98	2.48	2.36	4.84	1.50	2.54
25132	DO-A 45×100	1484	3.94	4.33	0.47	1.38	3.35	2.87	5.88	1.77	4.98
57671	DO-A 50×120	2284	4.72	5.12	M12	1.57	3.50	3.07	6.57	1.97	12.13
57672	DO-A 50×200	3426	7.87	8.27	M12	1.57	3.50	3.07	6.57	1.97	18.74

$\mathrm{c}_{\mathrm{d}}=$ dynamic spring value in $\mathrm{lb} /$ in at $\Varangle \pm 5^{\circ}$, in frequency range $300-600 \mathrm{rpm}$
Elements with higher load capacity are available on request.
*DO-A 45 with convex housing shape.

Material Structure

The housings up to size DO-A 45 are made out of light alloy profiles, housing of size 50 in nodular cast; inner squares in light alloy profile with 4 bores for the fixation of connection brackets shaker: eccentric rod.

Typical Calculation

ROSTA rubber suspension units DO-A employed as elastic drive heads are to be selected so that their spring value corresponds roughly to the total spring value. The oscillation angle α of the units must not exceed $\pm 5^{\circ}$.

Given:

Total weight of oscillating mass Speed $n_{\text {err }}$
Eccentric radius R

$$
\begin{aligned}
& =462 \mathrm{lbs} \\
& =320 \mathrm{rpm} \\
& =0.55 \mathrm{in}
\end{aligned}
$$

Guidelines for Fitting

The elastic slider crank drive may be applied optionally onto the trough I or the contermass II, at the beginning of the trough or elsewhere. Force introduction must be 90° to the angle β of the rocker suspensions. The unit axis must be 90° to the longitudinal axis of the conveyor trough and run centrally with this. Fixing is by shaft screws of 8.8 quality (analogous to fixing the universal joint support). Elastic drive heads should only be applied in natural frequency shaker systems!

Wanted:

Total spring value c_{t} in $\mathrm{lb} /$ in
$c_{t}=\frac{\left(\frac{2 \pi}{60} \cdot n_{\text {err }}\right)^{2} \cdot m}{g \cdot 12}=\frac{\left(\frac{2 \pi}{60} \cdot 320\right)^{2} \cdot 462}{32.16 \cdot 12}=1344 \mathrm{lb} / \mathrm{in}$

Selected: 1 piece of DO-A 45×100

Technology

4. Free Oscillation Systems

Freely oscillating one-mass systems (figs. 4 to 6) are supported with ROSTA oscillating mountings type $A B$ and $A B-D$. In this case the angle at which the excitation force is applied on the through determines the direction of oscillation. Thanks to the low frequency support, free oscillators impose only very small dynamic loads on the foundation. However for reasons of structure stiffnes (max. 23 ft), only certain conveyor lengths can be executed, otherwise oscillation nodes occur which obstruct conveying.
Free oscillating conveyors are driven by non-positive inertia drives exploiting the action of rotating unbalanced masses

4.1. Drive with one Unbalanced Motor

This alternative (fig. 4) is used mainly on circular oscillators, which are used mostly for inclined screen constructions. If an unbalanced motor is flanged onto a screening unit, the

Fig. 4

4.2. Drive with one Unbalanced Motor and Pendulum Mount

Linear oscillators with unbalanced motor on a pendulum mount (fig. 5) are employed for screens and short, light conveyors.
If an unbalanced motor is flanged onto a machine through on a pendulum mount E (e.g. DK-A with bracket BK , pages 23 and 27) so that the centres of the motor and oscillating

system performs slightly elliptical motions whose shape depends on the distance between the two centres of gravity S (screen) and S_{1} (unbalanced motor), and on the screen design.

B ROSTA oscillating mountings type $A B$
S Centre of gravity of screen
S_{1} Centre of gravity of unbalanced motor
I Screen
III Frame
bearing and the centre of gravity of the screen lie in a straight line, then approximately linear oscillations will be generated. Through the pendulum mount the centrifugal forces are transmitted almost entirely to the screen or trough, where as the transverse forces remain ineffective. The pendulum mount drive may be used only with smaller machines.

B ROSTA oscillating mountings type $A B$
E ROSTA rubber suspension units type DK-A with clamp BK
S Centre of gravity of screen
I Screen
III Frame
(unbalanced motors, exciters, eccentric double shafts). Suitable mounting of the drive systems ensures that the revolving unbalance is utilized only by the components in the actual direction of conveying. For example, two unbalanced masses counterrotating synchronously set up the necessary excitation force in that the flow components in the direction of the line joining the two centres of rotation cancel each other out, while those at right angles add up to give the harmonic excitation force. To avoid the unbalanced masses assuming excessive magnitude, the excitation frequency $\cong 12$ to 50 Hz .

Technology

4.3. Drive with two Unbalanced Motors

If two unbalanced motors are used with a linear shaker or screen (fig. 6), it must be borne in mind that they counter-

Fig. 6

4.4. Calculation for a Linear Oscillator with two Unbalanced Motors

The proper size of the oscillation mountings type $A B$ or $A B-D$ is determined as follows:
Oscillating weight (conveyor with 2 motors + proportion of material being moved) divided by number of support points (the individual points must be loaded approximately equally).
At least 4 supports, if not more, are needed for the suspension of a linear oscillator. (Very often, due to the mounting position of the unbalanced motors, lies the position of the

Formulas for the principal variables of a free oscillator:

Oscillating amplitude
$\mathrm{SW}=\frac{\text { working torque in inch-pounds }}{\text { total weight in pounds }} \cdot 10=$ in

Oscillating machine factor
$K=\frac{\left(\frac{2 \pi}{60} \cdot n_{\text {err }}\right)^{2} \cdot \mathrm{sw}}{32.16 \cdot 24}=[-]$
Insulation efficiency
$W=100-\frac{100}{\left(\frac{f_{\text {err }}}{f_{\mathrm{e}}}\right)^{2}-1}=\%$
rotate and are joined absolutely rigid, so that they synchronize at once when switched on, setting-up linear oscillations.

B ROSTA oscillating mountings type $A B$
S Centre of gravity of trough/screen
I Trough/screen
III Frame
center of gravity close by the discharge-end. The load arrangement "discharge-end: feed-end" is therefore very often $60 \%: 40 \%$ and requires at least 6 or more mounts.) The excitation frequency may be neglected, because according to experience the amplitudes do not exceed 0.6 in , so that the oscillation angles are relatively small. The natural frequency of the $A B$ must be at least 3 times lower than its excitation frequency.

Nomogram: conveying speed for free oscillating screens
From the intersection of the coordinates amplitude $=$ 0.16 in and motor speed $\mathrm{n}=1460 \mathrm{rpm}$, with acceleration around 5 g the conveying speed emerges as $9.84 \mathrm{in} / \mathrm{sec}$.

Oscillating Mounting

Typical Calculation

The size and number of the oscillating mountings types $A B$ and $A B-D$ are calculated as follows: oscillating weight (device consisting of drive units and the material conveyed) divided by the number of supports. The oscillating angle may thus be neglected. The excitation frequency must be at least 3 times higher than the natural frequency of the $A B$ oscillating mountings to get an acceptable degree of vibration damping towards substructure.

Given:

Weight of the empty trough with drive unit	$=1822 \mathrm{lbs}$.
Material on trough of which 20% for coupling effect	$=134 \mathrm{lbs}$.
Total weight of oscillating mass (trough, driving unit and coupling)	$=27 \mathrm{lbs}$.
(

6 support points

Installation Guidelines

The ROSTA oscillating elements types $A B$ and $A B-D$ have to be chosen according to the weight of the oscillating mass (see pages 69 and 71). They must be installed between the screen structure and the basement, according to the position of the centre of gravity (see following examples). The upper arm is the rocking arm of the oscillating unit. All elements should be mounted in the same direction, the upper arms being inclined in the direction of the material flow (see following examples). This way, the upper arms of the screen mounts support the

Drive Options

A. Circular Oscillator with One Unbalanced Motor

The unbalanced motor causes the device to perform elliptical oscillating movements of which the form is given by the distance between the centres of gravity of the motor and the screen device and the shape of the latter. Circular vibrating screens are mounted (inclined) according to the their function (see fig. 1).

B. Linear Oscillators with Two Unbalanced Motors

In case the device is supposed to perform linear oscillating movements, it is necessary to mount two unbalanced motors with rigid connection. The motors must rotate in opposite direction (to each other). The centres of gravity of the motors and the device must be on the same line, their inclination being generally 45° (see fig. 2).

C. Linear Oscillators with One Unbalanced Motor on Pendulum Mount

If the unbalanced motor is mounted on a pendulum mount, the device's oscillating movements are not exactly straight-line, but slightly elliptical. Their form depends on the distance between the centres of gravity of the motor and screen device and on the shape of the latter. Drives on pendulum mounts may be used only on smaller devices. Their inclination is usually 45° (see fig. 3).

Wanted:

Loading per support $=\frac{m}{6}=\frac{1849}{6}=308.17 \mathrm{lbs}$.
Selected: 6 units of type AB 38

See formulas on page 67 for calculating the amplitudes, machine factors and insulation efficiency.
linear motion of the screening machine. The lower arm acts as a vibration damper only partly executing the movement of the machine. However, due to its considerable spring deflection the lower arm guarantees a very low natural frequency of the screen mount. In order to assure an optimal conveying of the material it is important to fix the $A B$ and $A B-D$ elements axis at right angles to the conveying direction (allowance: $\pm 1^{\circ}$). (Fig. 1 , section A)

ROSTA

Oscillating Mounting

Type AB

AB 15-27

AB45-50

C	Dimensions in inches								Weight in lbs.
	D	E	F	H	K	L	M	N	
3.15	0.28	1.97	2.56	0.08	0.39	1.57	2.05	-	1.12
3.94	0.35	2.36	3.15	0.10	0.55	1.97	2.64	-	2.54
3.94	0.43	3.15	4.13	0.12	0.67	2.36	3.15	-	4.85
4.92	0.51	3.94	4.92	0.16	0.83	3.15	4.09	1.57	11.24
5.51	0.51×0.79	4.53	5.71	0.31	1.10	3.94	5.20	2.56	25.35
5.91	0.67×1.06	5.12	6.69	0.47	1.38	4.72	6.30	2.36	42.15
5.91	0.67×1.06	5.12	6.69	0.47	1.57	7.87	9.65	2.76	71.00

Material Structure

AB	15	18	27	38	45	50	50-2
Light alloy profile	$\begin{aligned} & \text { DW } \\ & \text { DO } \end{aligned}$	$\begin{aligned} & \text { DW } \\ & \text { DO } \end{aligned}$	$\begin{aligned} & \text { DW } \\ & \text { DO } \end{aligned}$	$\begin{aligned} & \text { DW } \\ & \text { DO } \end{aligned}$	DO		
Nodular cast					DW	$\begin{aligned} & \text { DW } \\ & \text { DO } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { DW } \\ \text { DO } \\ \text { Inner parts } \end{array}$
Steel welded construction	Inner parts						

c_{d}	$A B 15$	$A B 18$	$A B 27$	$A B 38$	$A B 45$	$A B 50$	$A B 50-2$
vertical	57	103	229	343	571	1085	1827
horizontal	34	80	143	171	286	485	799

$c_{d}=$ dynamic spring value in $\mathrm{lb} / \mathrm{in}$, in nominal load range at $\mathrm{n}_{\text {err }}=960 \mathrm{rpm}$, sw 0.315 in

ROSTA

Oscillating Mounting

Type AB TWIN

AB 50 TWIN

AB 50-2 TWIN

| UPC \# | Type | G | A
 un-
 loaded | max.
 load | B
 un-
 loaded | max
 load | C | D | E | F | Weight
 in lbs. |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 63797 | AB50 TWIN | $1124.06-2697.75$ | 14.96 | 11.02 | 5.91 | 7.09 | 1.18 | 4.72 | 11.41 | 11.81 | 77.16 |
| 63798 | AB50-2 TWIN | $1888.43-4496.25$ | 14.96 | 11.02 | 5.91 | 7.09 | 1.57 | 7.87 | 18.11 | 18.50 | 119.05 |

G = load capacity in lbs. per mount

cd	AB 50 TWIN	AB 50-2 TWIN
vertical	2170	3654
horizontal	971	1599

$\mathrm{c}_{\mathrm{d}}=$ dynamic spring value in $\mathrm{lb} /$ in, in nominal load range at $n_{\text {err }}=960 \mathrm{rpm}, \mathrm{sw}=0.315 \mathrm{in}$

Oscillating Mounting

Type AB-HD

| UPC \# | Type | G | A
 un-
 loaded | max.
 load | un-
 un- | max.
 maded
 load | C | D | E | F | H | K | L | M | N | Weight
 in lbs. |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 79095 | AB-HD 50-2 | $1348.4-3146.3$ | 14.8 | 12.24 | 4.09 | 5.55 | 4.72 | 0.67×1.06 | 5.12 | 6.7 | 0.47 | 1.77 | 7.87 | 9.84 | 2.76 | 78.26 |

G = load capacity in lbs. per mount

c_{d}	AB-HD 50-2
vertical	2050
horizontal	1582

$\mathrm{c}_{\mathrm{d}}=$ dynamic spring value in $\mathrm{lb} /$ in, in nominal load range at $\mathrm{n}_{\text {err }}=960 \mathrm{rpm}, \mathrm{sw}=0.315 \mathrm{in}$

Oscillating Mounting

Type AB-D

UPC \#	Type	Load in lbs.	$\begin{gathered} \mathrm{A} \\ \text { un- } \\ \text { loaded } \end{gathered}$	A max. load	B	C	D	E	F	H	I	J	K	L	M	Weight in lbs.
75676	AB-D 18	112.41-269.77	5.39	4.61	4.53	2.40	1.97	0.49	3.54	0.12	0.35	0.35	2.91	1.22	1.18	2.87
63733	AB-D 27	224.81 - 562.03	7.24	6.18	5.91	3.66	3.15	0.59	4.72	0.16	0.35	0.43	4.57	1.73	1.97	6.39
63734	AB-D 38	449.63-899.25	9.61	8.23	7.28	4.65	3.94	0.69	5.91	0.20	0.43	0.53	5.79	2.36	2.76	16.54
75677	AB-D 45	674.44-1348.88	11.73	9.92	8.66	5.20	4.33	0.98	6.69	0.24	0.53	0.71	6.61	2.87	3.15	25.35
63854	AB-D 50	899.25-2023.31	12.95	10.94	9.25	5.59	4.72	0.98	7.28	0.24	0.53	0.71	6.54	3.07	3.54	48.50
63855	AB-D 50-1.6	1798.50-2697.75	12.95	10.94	9.25	7.32	6.30	0.98	7.28	0.31	0.53	0.71	8.43	3.07	3.54	56.22
63856	AB-D 50-2	2472.94-3597.00	12.95	10.94	9.25	8.90	7.87	0.98	7.28	0.31	0.53	0.71	10.24	3.07	3.54	63.94

UPC \#	Type	$\mathrm{n}_{\text {err }}=740 \mathrm{rpm}$	max. sw $\mathrm{n}_{\mathrm{err}}=980 \mathrm{rpm}$	$\mathrm{n}_{\text {err }}=1460 \mathrm{rpm}$	vertical	C_{d} at sw	horizontal
75676	AB-D 18	0.20	0.16	0.12	570	0.16	114
63733	AB-D 27	0.24	0.20	0.16	913	0.16	200
63734	AB-D 38	0.31	0.28	0.20	1056	0.24	228
75677	AB-D 45	0.40	0.31	0.24	1312	0.31	400
63854	AB-D 50	0.47	0.40	0.31	1770	0.31	685
63855	AB-D 50-1.6	0.47	0.40	0.31	2455	0.31	913
63856	AB-D 50-2	0.47	0.40	0.31	3082	0.31	1130

max. $s w=$ max. amplitude in inch
$\mathrm{c}_{\mathrm{d}}=$ dynamic spring value in $\mathrm{lb} / \mathrm{in}$, in nominal load range at $\mathrm{n}_{\text {err }}=980 \mathrm{rpm}$ (please respect max. amplitude in in) .

Material Structure

The double housings of the sizes 18 to 45 are made out of light alloy profiles, the ones from size 50 in nodular cast; the inner squares in light alloy profiles; fixation brackets in steel.

Owing to the significantly shorter lever arm connections (in the double rubber suspension unit) the $A B-D$ provides \mathbf{a} far higher loading capacity compared with the type $A B$ oscillating mountings with extremely compact construction. The linear cushioning produced under load, however, is sufficient to ensure the respectably low natural frequency of this oscillating mounting of approx. 3.5 Hz . At the oscillating machine frequency of approx. 16 Hz , the mounting provides an insulation efficiency of approx. 96%.

Oscillating Mounting

Technical Data (for free oscillating systems, only)

UPC \# Type		$\mathrm{n}_{\text {err }}=740 \mathrm{rpm}$			$\mathrm{n}_{\text {err }}=980 \mathrm{rpm}$			$\mathrm{n}_{\text {err }}=1460 \mathrm{rpm}$		
		sw	Cd	G	sw	Cd	G	sw	Cd	G
63925	AU-DO 18	*	*	*	0.16	800	33	0.12	714	24
63926	AU-DO 27	*	*	*	0.20	914	54	0.16	885	34
63941	AU-DO 38	0.31	1085	117	0.28	1142	89	*	*	*
63942	AU-DO 45	0.39	1370	209	0.31	1485	155	*	*	*
63943	AU-DO 50	0.47	1999	319	0.39	2113	234	*	*	*

* = not recommendable
$s w=$ max. amplitude in inch (peak to peak)
$\mathrm{c}_{\mathrm{d}}=$ dynamic stiffness in $\mathrm{lb} /$ in, by ment. rpm. and amplitude
$G=$ max. static load in lb per rocker, by ment. rpm. and amplitude
Nomogram for speed calculation, see table on page 67, below
Rocker arms for higher loads and different drive parameters are available on specific request.

Material Structure

The double housings are made out of light alloy profiles, the ones from size 50 in nodular cast. The rocker arms, inner squares and flanges in steel. All steel parts are galvanized and yellow passivated.

Dimensions

UPC \#	Type	A	B	C	D	E	F	H	I	K	L	M	N	\bigcirc	Weight in lbs.
63925	AU-DO 18	4.33	5.12	2.36	3.35	1.22	2.87	1.38	0.20	1.97	5.91	0.37	0.31	-	2.43
63926	AU-DO 27	4.72	5.91	3.15	4.33	1.73	3.27	1.77	0.20	2.36	6.89	0.45	0.31	-	4.08
63941	AU-DO 38	5.31	6.69	3.94	5.51	2.36	4.25	2.36	0.24	3.15	7.87	0.55	0.39	-	6.17
63942	AU-DO 45	6.30	8.07	5.12	7.09	2.87	5.35	2.76	0.31	3.94	9.45	0.71	0.47	-	13.34
63943	AU-DO 50	7.28	9.25	5.51	7.48	3.07	6.50	3.15	0.39	4.72	10.83	0.71	0.59	5.31	21.50

For the initial selection of your shaker machine concept with AU-DO rockers please contact us, we have the appropriate electronic calculation program available for cross checking.

The AU-DO rocker arms were mainly developed for trough suspensions in excited-chassis two-mass oscillating systems (energetic amplification). The chassis \mathbf{m}^{1} is excited by unbalanced motors and the spring accumulator units of the AU-DO mountings amplify the small oscillation amplitudes onto the screen or the conveyor trough \mathbf{m}^{2}. The chassis of the machine has to be installed on low frequency mounts, ideally on ROSTA oscillating mountings type $A B$. These shaker systems are characterized by extremely low, hardly measurable residual force transmission to the machine foundations and are hence ideally suited for installation on steel scaffolding and false floors in processing building. Additional benefits of this system are the nearly
noiseless running of the shaker, the low consumption of electric power and the easy installation of the spring accumulators.
These high stiffness accumulator arms are also highly suitable for the suspension of freely oscillating singlemass systems with unbalanced motor drive. This simple oscillating system allows the easy design of high speed conveying systems. Finally, the universal rocker arms from ROSTA are applicable in crank-driven oscillating conveyor systems. Here they have the function of trough guide and spring accumulator unit at the same time. This unique machine component is allowing to design different types of resonant shaking systems.

Oscillating Mounting

Free Oscillating Shaker System "Silent Flow"

Basics:

Two mass oscillating system with energetic amplification of trough mass (m_{2})
Driven by two unbalanced motors
Amplitude fine-tuning by inverter

General Parameters:

Center distances
between trough suspensions $\quad \mathrm{m}=39.37 \ldots 59.06$ in
(depending on structure stiffness)

$$
\begin{array}{ll}
\text { Ratio } m_{1}: m_{2} & m_{1}=3 \cdot m_{2} \text { (ideal) } \\
& m_{1}=2 \cdot m_{2} \text { (minimum) }
\end{array}
$$

Basics of element selection:

(Please check also formulas point 3.1, page 52)
Total spring value $[\mathrm{lb} / \mathrm{in}]$

$$
c_{t}=\frac{m_{1} \cdot m_{2}}{m_{1}+m_{2}} \cdot\left(\frac{2 \pi}{60} \cdot n_{\text {err }}\right)^{2} \cdot \frac{1}{g \cdot 12}
$$

Quantity of required suspensions (AU-DO) for shaking function $z=\frac{c_{t}}{0.9 \cdot c_{d}}$ in resonance

Oscillating machine factor [-] $K=\frac{\left(\frac{2 \pi}{60} \cdot n_{\text {err }}\right)^{2} \cdot s w}{g \cdot 12 \cdot 2}$
Total required centrifugal force of motor [lb]
$F_{z}=z \cdot c_{d} \cdot \frac{s w}{2}$
in using two unbalanced motors

Calculation Example

Given:

Required material speed $\quad v_{\text {th }}$
Weight of countermass m_{1}, with motors
Weight of empty trough m_{2}
Material weight on trough on m_{2} Effective coupling weight 20%
Total weight of trough m_{2}
Ratio mass $m_{1}: m_{2}$
Length of trough

Selection of the suspensions:

Excitation frequency $\mathrm{n}_{\text {err }} \quad=1460 \mathrm{rpm}$
Excitation amplitude sw $\quad=0.16$ in
Theoretical material speed (see diagram on page 67)
Oscillating machine factor
Total dynamic spring value
K
$=9.84 \mathrm{in} / \mathrm{sec}$
$=5$

Dynamic spring value for selection of suspensions
Quantity of suspensions
type AU-DO 27 ($\mathrm{c}_{\mathrm{d}} 885 \mathrm{lb} / \mathrm{in}$)

Please check in table "technical data" on previous page, if the suspensions AU-DO 27 have the static load capacity of the mentioned mass (69.6:4 = 17.4 lbs . and max. capacity of the element is 33 lbs .)

Required centrifugal force
per unbalanced motor*
Selection of the supports $A B$ under m_{1}
$G=\frac{\left(m_{1}+m_{2}\right)}{\text { quantity } A B}=\frac{(203 \mathrm{lbs} .+69.6 \mathrm{lbs} .)}{4}$
*(system with 2 motors)
$=140 \mathrm{lbs}$.

$$
=68 \mathrm{lbs} .=4 \cdot \mathrm{AB} 27
$$

Universal Joint

UPC \#	Type	$G=$ max. load in lbs. per support	n max. in rpm at $\pm 5^{\circ}$	Dimensions in inches								
				A	B	C	D	E	F	G	$\varnothing \mathrm{H}$	in lbs.
25220	AK 15	35.97	1200	0.20	0.39	1.06	2.13	2.56	-	-	-	0.88
25221	AK 18	67.44	800	0.24	0.47	1.26	2.52	3.35	-	-	-	1.32
25222	AK 27	179.85	800	0.31	0.79	1.77	3.82	4.13	-	-	-	4.19
25223	AK 38	359.70	800	0.39	0.98	2.36	5.12	5.12	-	-	-	8.16
25224	AK 45	674.43	600	0.47	1.38	2.83	6.14	6.30	-	-	-	14.77
25225	AK 50	1258.94	400	M 12	1.57	3.07	6.69	8.27	1.57	2.76	0.48	25.13
25226	AK 60	2248.10	300	M 16	1.77	3.94	8.58	12.20	1.97	3.15	0.65	68.34
25227	AK 80	4496.20	150	M20	2.36	5.35	11.14	16.14	1.97	3.54	0.81	160.94
57674	AK 100-4	6744.30	100	M24	2.95	2.76	13.39	16.14	1.97	3.94	0.98	273.37
57675	AK 100-5	8992.40	100	M24	2.95	6.69	13.39	20.08	1.97	3.94	0.98	326.28

For the fixation of the inner squares of the universal joints type AK 15 to AK 45 we suggest the use of threaded bolts passing the full element length. For the sizes AK 50 to AK 100 it is recommendable to use tension shaft screws

Material Structure

The housings of element types AK 27, 38, 45, 50, 60, 80 and $100-4$ are made out of nodular cast; the other housings are made in welded steel structure. The inner squares of the sizes $A K 15$ to AK 50 are light alloy profiles; the squares of the types $A K 60,80$ and 100 are made out of steel.
quality 8.8. The inner square profiles of the AK 50 to AK 100 are also having lowered thread bores, in order to allow the use of tensile shaft screws.

Joint Support

In order to obtain a regular torsional load on all elements and a harmonic circular motion, the inner elements " E " of the universal joints must be fitted offset 90° to the one underneath. The connection between the two universal joints AK and the support ready to be installed must be adapted to the corresponding installation height, and be provided by the customer. For the fixing of the inner square sections we recommend to use hexagonal shaft screws of 8.8 quality. For the size AK 50 or bigger there are threads borings on the inner squares of the elements.

Installation Guidelines

The oscillation angle α must not exceed $10^{\circ}\left(\pm 5^{\circ}\right)$. Otherwise the elements " E " must be set with longer center distance (distance " X "). In order to eliminate the tilting and cardanic movements, the upper elements of the universal joint support are placed at the height close to the centre of gravity S of the screen box.

Typical Calculation ("upright" version)

Total oscillating mass m
Eccentric radius R
Support height X

$$
=0.98 \text { in }
$$

Oscillating angle α
Speed $n_{\text {err }}$
Number of universal joint supports z
Max. dynamic load per support $G=\frac{3527 \cdot 1.25^{*}}{4}$

$$
=3527 \mathrm{lbs}
$$

$=31.49 \mathrm{in}$
$=31.4{ }^{\circ}$
$=3.6^{\circ}$
$=230 \mathrm{rpm}$
$=4 \mathrm{pcs}$.
$=1102.2 \mathrm{lbs}$.
Selected: 4 supports with each 2 AK 50 elements
$=8 \mathrm{AK} 50$
*= Due to the instability of the "upright" sifters, we include a security factor of 1.25 for the calculation of the AK elements.

Suspended Version

We recommend our AK universal joints also for this version, which is especially used for screening tables and tumbling gyrators. Usually unbalanced motors are used to drive the screens, causing the discharge-end to oscillate freely (tumbling movements). The universal joints are under traction. However, the actual units remain the same. This version doesn't require a security factor.

Oscillating Mounting

Size AV 50

UPC \#	Type	G	Dimensions in inches									Weight in lbs.
			A	B	C	D	H	L	M	N	O	
63374	AV 18	134.89-359.70	2.36	2.56	1.59	1.10	1.06	2.36	M16	0.51	2.13	0.84
63375	AV 18L	134.89-359.70	2.36	2.56	1.59	1.10	1.06	2.36	M16L	0.51	2.13	0.84
63376	AV 27	292.25-674.43	3.15	3.54	2.09	1.65	1.46	3.15	M20	0.63	2.91	2.18
63377	AV 27L	292.25-674.43	3.15	3.54	2.09	1.65	1.46	3.15	M20L	0.63	2.91	2.18
73378	AV 38	584.51-1124.05	3.94	4.33	2.64	1.89	1.73	3.94	M24	0.79	3.50	3.84
73379	AV 38L	584.51-1124.05	3.94	4.33	2.64	1.89	1.73	3.94	M24L	0.79	3.50	3.84
63939	AV40	1011.29-1685.49	4.72	5.12	2.74	2.36	1.89	4.13	M36	0.79	3.66	9.92
63940	AV40L	1011.29-1685.49	4.72	5.12	2.74	2.36	1.89	4.13	M36L	0.79	3.66	9.92
73382	AV 50	1348.86-3596.96	7.87	8.27	3.35	3.15	2.36	5.12	M 42	-	4.57	27.09
73383	AV 50L	1348.86-3596.96	7.87	8.27	3.35	3.15	2.36	5.12	M 42L	-	4.57	27.09

$G=$ max. load capacity in lbs per mount or rocker arm

Material Structure

The housings are made out of light metal die cast, housing of type AV 50 in nodular cast. Inner squares are light alloy profiles.

Typical Calculation

Given:

Total weight of oscillating mass m
Circular oscillating, amplitude (peak to peak)

Wanted:

Element size, configuration and center distance A
Load per arm: $\frac{\mathrm{m}}{4}=\frac{1764}{4}=441 \mathrm{lbs}$.
Selected: 8 pcs. AV 27 (4 arms consisting of 2 AV 27, crosswise installed for purely circular motion).
Eventually with right- and left-hand threads.
Permissible center distance A by max. oscillation angle of 2°, and radius $=0.79 \mathrm{in}$:
$\mathrm{A}=\frac{0.79}{\operatorname{tg} 2^{\circ}}=\frac{0.79}{0.034920769}=\underline{22.62}$

ROSTA

Oscillating Mounting

Type AV

Installation:

Fig. I

circular

Fig. II

Fig. I: Element configuration "crosswise" (element axis offset 90°) for guiding circular motions of gyratory sifters. Max. angle $\beta= \pm 2^{\circ}$

Fig. II: Element configuration "parallel" (e.g. for support of Rotex-type screens) for guiding elliptic motions.
Max. angle $\alpha= \pm 5^{\circ}$
Max. angle $\beta= \pm 2^{\circ}$
The connection rod with nuts and spring washers has to be supplied by the customer.

Installation

The length of the connection rod and the resulting centrifugal force determine the radius of the circular motion of the hanging gyratory screen or sifter. The rocker on the sifter should be fixed close to the centre of gravity (S) or slightly below the centre of gravity of the oscillating machine part (see sketch).
The standardised right- or left-hand threads of the AV elements allow a very easy adjustment of the four rocker arms (L) and thus of the length (A).
Use central screws (M12, M16, M20 and M24) to connect the rocker arm and the ceiling structure for elements sizes $A B 18,27,38$ and 45 . For the AV 50 size use four M12 screws on both ends.

ROSTA

Applications

$A B$ suspension of a vegetable feeder
$A B$ suspension of a circular gravel screen

Stainless steel $A B^{\prime}$ s supporting salad feeder

$A B-D$ suspension of a rice screen

Hanging silo-discharge-feeder on $A B$

$A B-D$ suspension of a dewatering screen

[^0]: * for single drive heads always use a thickness of 0.125 in.

[^1]: $c_{d}=$ dynamic spring value in lb/in
 $\mathrm{R}=$ permissible radius in in
 sw = max. amplitude (peak to peak) in in
 $\mathrm{n}_{\text {err }}=$ max. frequency in rpm

